a montagem do circuito, para expansão de entradas e saídas, pode ser visto nesse link.
http://fabianoallex.blogspot.com.br/2015/06/arduino-74hc595-e-74hc165-juntos.html
a explicação sobre o teclado matricial, pode ser visto aqui
http://fabianoallex.blogspot.com.br/2015/06/arduino-teclado-matricial-com-74hc595-e.html
Display LCD
Para ligar o Display LCD no Arduino, há uma biblioteca específica, que faz a comunicação entre os pinos do Arduino e o Display, porém nesse exemplo, o display não irá se comunicar diretamente com o Arduino, e sim com um dos 595 que são controlados pelo Arduino. Então para conseguir fazer a comunicação entre o Arduino e o Display LCD, foi necessário fazer alterações na biblioteca disponibilizada para tal. Como a biblioteca foi escrita para se comunicar com os pinos do Arduino, foi necessário, substituir todas as chamadas feitas a digitalWrite(pin, value) para exp1->write(pin, value). E todas as referencias a pinMode(pin, mode) foram removidas.
Essas alterações não foram feitas diretamente na biblioteca, o que eu fiz, foi copiar o conteúdo da biblioteca e colar dentro da sketch e fazer as devidas alterações, como pode ser visto no código-fonte abaixo. Ainda não criei uma biblioteca específica para isso, pois ainda não terminei de fazer todos os testes, então por enquanto, é assim mesmo que vai funcionar.
Vídeo
Código-Fonte:
/******************************************************************************************** *******************CLASSE Expansor74HC595_74HC165 INICIO********************************* *********************************************************************************************/ class Expansor74HC595_74HC165 { private: int _pin_clock; int _pin_latch; int _pin_data; byte* _pins_out; byte* _pins_in; int _num_cis_out; int _num_cis_in; public: Expansor74HC595_74HC165(int pin_clock, int pin_latch, int pin_data, int num_cis_out, int num_cis_in){ _pin_clock = pin_clock; _pin_latch = pin_latch; _pin_data = pin_data; _num_cis_out = num_cis_out; _num_cis_in = num_cis_in; _pins_out = new byte[num_cis_out]; _pins_in = new byte[num_cis_in]; pinMode(_pin_clock,OUTPUT); pinMode(_pin_latch,OUTPUT); clear(); } void clear(){ for (int i=0; i<_num_cis_out; i++){ _pins_out[i] = B00000000; } update(); } void update(){ digitalWrite(_pin_clock, LOW); digitalWrite(_pin_latch, LOW); digitalWrite(_pin_latch, HIGH); for(int i=max(_num_cis_in, _num_cis_out) * 8 - 1; i>=0; i-- ) { //max -->o for vai até o que tiver mais, ou entradas, ou saidas int pos = i / 8; int pin = 7-(i % 8); if (i < _num_cis_in * 8){ pinMode(_pin_data, INPUT); if ( digitalRead(_pin_data) ){ _pins_in[pos] |= (1 << pin); //set a bit HIGH } else { _pins_in[pos] &= ~(1 << pin); //set a bit LOW } } if (i < _num_cis_out * 8){ pinMode(_pin_data, OUTPUT); digitalWrite(_pin_data, (_pins_out[pos] & (1 << pin)) != 0 ); } digitalWrite(_pin_clock, HIGH); digitalWrite(_pin_clock, LOW); } digitalWrite(_pin_latch, LOW); digitalWrite(_pin_latch, HIGH); pinMode(_pin_data, INPUT); } int read(int pin){ int pos = pin / 8; pin = 7-(pin % 8); if (pos > _num_cis_out) { pos = pos - _num_cis_out; return ( (_pins_in[pos] & (1 << pin)) != 0 ); } else { return ( (_pins_out[pos] & (1 << pin)) != 0 ); } } byte readByte(int num_ci) { if (num_ci >= _num_cis_out) { num_ci = num_ci - _num_cis_out; return _pins_in[num_ci]; } else { return _pins_out[num_ci]; } } void write(int pin, int value){ if (pin >= _num_cis_out*8) { return; } int pos = pin / 8; //pos -> indica qual ci será atualizado. pin = 7-(pin % 8); if (pos > _num_cis_out) { return; //se estiver tentando escrever um pino de entrada, apenas retorna, sem fazer nada. } else { if (value){ _pins_out[pos] |= (1 << pin); //set a bit HIGH } else { _pins_out[pos] &= ~(1 << pin); //set a bit LOW } } } void writeByte(int num_ci, byte b, int first = MSBFIRST) { if (num_ci > _num_cis_out) { return; //se estiver tentando escrever um pino de entrada, apenas retorna, sem fazer nada. } if (first == LSBFIRST) { byte r=0; for(int i=0;i<8;i++) { r |= ((b>>i) & 0b1)<<(7-i); } b = r; } _pins_out[num_ci] = b; } ; }; /******************************************************************************************** *******************CLASSE Expansor74HC595_74HC165 FIM *********************************** *********************************************************************************************/ /******************************************************************************************** *******************ponteiro para o expansor a ser instanciado INICIO ********************** *********************************************************************************************/ Expansor74HC595_74HC165 * exp1; /******************************************************************************************** *******************ponteiro para o expansor a ser instanciado FIM ************************* *********************************************************************************************/ /******************************************************************************************** *******************CLASSE LiquidCrystal INICIO ******************************************** *********************************************************************************************/ #include <inttypes.h> #include "Print.h" // commands #define LCD_CLEARDISPLAY 0x01 #define LCD_RETURNHOME 0x02 #define LCD_ENTRYMODESET 0x04 #define LCD_DISPLAYCONTROL 0x08 #define LCD_CURSORSHIFT 0x10 #define LCD_FUNCTIONSET 0x20 #define LCD_SETCGRAMADDR 0x40 #define LCD_SETDDRAMADDR 0x80 // flags for display entry mode #define LCD_ENTRYRIGHT 0x00 #define LCD_ENTRYLEFT 0x02 #define LCD_ENTRYSHIFTINCREMENT 0x01 #define LCD_ENTRYSHIFTDECREMENT 0x00 // flags for display on/off control #define LCD_DISPLAYON 0x04 #define LCD_DISPLAYOFF 0x00 #define LCD_CURSORON 0x02 #define LCD_CURSOROFF 0x00 #define LCD_BLINKON 0x01 #define LCD_BLINKOFF 0x00 // flags for display/cursor shift #define LCD_DISPLAYMOVE 0x08 #define LCD_CURSORMOVE 0x00 #define LCD_MOVERIGHT 0x04 #define LCD_MOVELEFT 0x00 // flags for function set #define LCD_8BITMODE 0x10 #define LCD_4BITMODE 0x00 #define LCD_2LINE 0x08 #define LCD_1LINE 0x00 #define LCD_5x10DOTS 0x04 #define LCD_5x8DOTS 0x00 class LiquidCrystal : public Print { public: LiquidCrystal(uint8_t rs, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7); LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7); LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3); LiquidCrystal(uint8_t rs, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3); void init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7); void begin(uint8_t cols, uint8_t rows, uint8_t charsize = LCD_5x8DOTS); void clear(); void home(); void noDisplay(); void display(); void noBlink(); void blink(); void noCursor(); void cursor(); void scrollDisplayLeft(); void scrollDisplayRight(); void leftToRight(); void rightToLeft(); void autoscroll(); void noAutoscroll(); void setRowOffsets(int row1, int row2, int row3, int row4); void createChar(uint8_t, uint8_t[]); void setCursor(uint8_t, uint8_t); virtual size_t write(uint8_t); void command(uint8_t); using Print::write; private: void send(uint8_t, uint8_t); void write4bits(uint8_t); void write8bits(uint8_t); void pulseEnable(); uint8_t _rs_pin; // LOW: command. HIGH: character. uint8_t _rw_pin; // LOW: write to LCD. HIGH: read from LCD. uint8_t _enable_pin; // activated by a HIGH pulse. uint8_t _data_pins[8]; uint8_t _displayfunction; uint8_t _displaycontrol; uint8_t _displaymode; uint8_t _initialized; uint8_t _numlines; uint8_t _row_offsets[4]; }; #include <stdio.h> #include <string.h> #include <inttypes.h> #include "Arduino.h" // When the display powers up, it is configured as follows: // // 1. Display clear // 2. Function set: // DL = 1; 8-bit interface data // N = 0; 1-line display // F = 0; 5x8 dot character font // 3. Display on/off control: // D = 0; Display off // C = 0; Cursor off // B = 0; Blinking off // 4. Entry mode set: // I/D = 1; Increment by 1 // S = 0; No shift // // Note, however, that resetting the Arduino doesn't reset the LCD, so we // can't assume that its in that state when a sketch starts (and the // LiquidCrystal constructor is called). LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) { init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7); } LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) { init(0, rs, 255, enable, d0, d1, d2, d3, d4, d5, d6, d7); } LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) { init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0); } LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) { init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); } void LiquidCrystal::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) { _rs_pin = rs; _rw_pin = rw; _enable_pin = enable; _data_pins[0] = d0; _data_pins[1] = d1; _data_pins[2] = d2; _data_pins[3] = d3; _data_pins[4] = d4; _data_pins[5] = d5; _data_pins[6] = d6; _data_pins[7] = d7; //pinMode(_rs_pin, OUTPUT); // we can save 1 pin by not using RW. Indicate by passing 255 instead of pin# if (_rw_pin != 255) { //pinMode(_rw_pin, OUTPUT); } //pinMode(_enable_pin, OUTPUT); if (fourbitmode) _displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS; else _displayfunction = LCD_8BITMODE | LCD_1LINE | LCD_5x8DOTS; begin(16, 1); } void LiquidCrystal::begin(uint8_t cols, uint8_t lines, uint8_t dotsize) { if (lines > 1) { _displayfunction |= LCD_2LINE; } _numlines = lines; setRowOffsets(0x00, 0x40, 0x00 + cols, 0x40 + cols); // for some 1 line displays you can select a 10 pixel high font if ((dotsize != LCD_5x8DOTS) && (lines == 1)) { _displayfunction |= LCD_5x10DOTS; } // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION! // according to datasheet, we need at least 40ms after power rises above 2.7V // before sending commands. Arduino can turn on way before 4.5V so we'll wait 50 delayMicroseconds(50000); // Now we pull both RS and R/W low to begin commands exp1->write(_rs_pin, LOW); exp1->write(_enable_pin, LOW); if (_rw_pin != 255) { exp1->write(_rw_pin, LOW); } exp1->update(); //put the LCD into 4 bit or 8 bit mode if (! (_displayfunction & LCD_8BITMODE)) { // this is according to the hitachi HD44780 datasheet // figure 24, pg 46 // we start in 8bit mode, try to set 4 bit mode write4bits(0x03); delayMicroseconds(4500); // wait min 4.1ms // second try write4bits(0x03); delayMicroseconds(4500); // wait min 4.1ms // third go! write4bits(0x03); delayMicroseconds(150); // finally, set to 4-bit interface write4bits(0x02); } else { // this is according to the hitachi HD44780 datasheet // page 45 figure 23 // Send function set command sequence command(LCD_FUNCTIONSET | _displayfunction); delayMicroseconds(4500); // wait more than 4.1ms // second try command(LCD_FUNCTIONSET | _displayfunction); delayMicroseconds(150); // third go command(LCD_FUNCTIONSET | _displayfunction); } // finally, set # lines, font size, etc. command(LCD_FUNCTIONSET | _displayfunction); // turn the display on with no cursor or blinking default _displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF; display(); // clear it off clear(); // Initialize to default text direction (for romance languages) _displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT; // set the entry mode command(LCD_ENTRYMODESET | _displaymode); } void LiquidCrystal::setRowOffsets(int row0, int row1, int row2, int row3) { _row_offsets[0] = row0; _row_offsets[1] = row1; _row_offsets[2] = row2; _row_offsets[3] = row3; } /********** high level commands, for the user! */ void LiquidCrystal::clear() { command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero delayMicroseconds(2000); // this command takes a long time! } void LiquidCrystal::home() { command(LCD_RETURNHOME); // set cursor position to zero delayMicroseconds(2000); // this command takes a long time! } void LiquidCrystal::setCursor(uint8_t col, uint8_t row) { const size_t max_lines = sizeof(_row_offsets) / sizeof(*_row_offsets); if ( row >= max_lines ) { row = max_lines - 1; // we count rows starting w/0 } if ( row >= _numlines ) { row = _numlines - 1; // we count rows starting w/0 } command(LCD_SETDDRAMADDR | (col + _row_offsets[row])); } // Turn the display on/off (quickly) void LiquidCrystal::noDisplay() { _displaycontrol &= ~LCD_DISPLAYON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void LiquidCrystal::display() { _displaycontrol |= LCD_DISPLAYON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // Turns the underline cursor on/off void LiquidCrystal::noCursor() { _displaycontrol &= ~LCD_CURSORON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void LiquidCrystal::cursor() { _displaycontrol |= LCD_CURSORON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // Turn on and off the blinking cursor void LiquidCrystal::noBlink() { _displaycontrol &= ~LCD_BLINKON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void LiquidCrystal::blink() { _displaycontrol |= LCD_BLINKON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // These commands scroll the display without changing the RAM void LiquidCrystal::scrollDisplayLeft(void) { command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVELEFT); } void LiquidCrystal::scrollDisplayRight(void) { command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVERIGHT); } // This is for text that flows Left to Right void LiquidCrystal::leftToRight(void) { _displaymode |= LCD_ENTRYLEFT; command(LCD_ENTRYMODESET | _displaymode); } // This is for text that flows Right to Left void LiquidCrystal::rightToLeft(void) { _displaymode &= ~LCD_ENTRYLEFT; command(LCD_ENTRYMODESET | _displaymode); } // This will 'right justify' text from the cursor void LiquidCrystal::autoscroll(void) { _displaymode |= LCD_ENTRYSHIFTINCREMENT; command(LCD_ENTRYMODESET | _displaymode); } // This will 'left justify' text from the cursor void LiquidCrystal::noAutoscroll(void) { _displaymode &= ~LCD_ENTRYSHIFTINCREMENT; command(LCD_ENTRYMODESET | _displaymode); } // Allows us to fill the first 8 CGRAM locations // with custom characters void LiquidCrystal::createChar(uint8_t location, uint8_t charmap[]) { location &= 0x7; // we only have 8 locations 0-7 command(LCD_SETCGRAMADDR | (location << 3)); for (int i=0; i<8; i++) { write(charmap[i]); } } /*********** mid level commands, for sending data/cmds */ inline void LiquidCrystal::command(uint8_t value) { send(value, LOW); } inline size_t LiquidCrystal::write(uint8_t value) { send(value, HIGH); return 1; // assume sucess } /************ low level data pushing commands **********/ // write either command or data, with automatic 4/8-bit selection void LiquidCrystal::send(uint8_t value, uint8_t mode) { exp1->write(_rs_pin, mode); // if there is a RW pin indicated, set it low to Write if (_rw_pin != 255) { exp1->write(_rw_pin, LOW); } exp1->update(); if (_displayfunction & LCD_8BITMODE) { write8bits(value); } else { write4bits(value>>4); write4bits(value); } } void LiquidCrystal::pulseEnable(void) { exp1->write(_enable_pin, LOW); exp1->update(); delayMicroseconds(1); exp1->write(_enable_pin, HIGH); exp1->update(); delayMicroseconds(1); // enable pulse must be >450ns exp1->write(_enable_pin, LOW); exp1->update(); delayMicroseconds(100); // commands need > 37us to settle } void LiquidCrystal::write4bits(uint8_t value) { for (int i = 0; i < 4; i++) { //pinMode(_data_pins[i], OUTPUT); exp1->write(_data_pins[i], (value >> i) & 0x01); } exp1->update(); pulseEnable(); } void LiquidCrystal::write8bits(uint8_t value) { for (int i = 0; i < 8; i++) { //pinMode(_data_pins[i], OUTPUT); exp1->write(_data_pins[i], (value >> i) & 0x01); } exp1->update(); pulseEnable(); } /******************************************************************************************** *******************CLASSE LiquidCrystal FIM *********************************************** *********************************************************************************************/ const int PIN_CLOCK = 4; const int PIN_LATCH = 7; const int PIN_DATA = 12; /**************************************************************** *********funcao pra ler teclado matricial com 595 e 165********** *****************************************************************/ #define GET_PIN(num_ci, pos) num_ci*8+pos #define col1 GET_PIN(3, 7) //pino do CI 3 (QUARTO CI) 165 - 31 #define col2 GET_PIN(3, 6) //pino do CI 3 (QUARTO CI) 165 - 30 #define col3 GET_PIN(3, 5) //pino do CI 3 (QUARTO CI) 165 - 29 #define lin1 GET_PIN(1, 4) //pino do CI 1 (SEGUNDO CI) 595 - 12 #define lin2 GET_PIN(1, 3) //pino do CI 1 (SEGUNDO CI) 595 - 11 #define lin3 GET_PIN(1, 2) //pino do CI 1 (SEGUNDO CI) 595 - 10 #define lin4 GET_PIN(1, 1) //pino do CI 1 (SEGUNDO CI) 595 - 9 char get_tecla(){ int l[]={lin1, lin2, lin3, lin4}; // Array de 4 posições contendo os 4 pinos de linhas int i = 0, k = 0, t = 0; for (i=0; i<4; i++) { exp1->write(lin1, LOW); exp1->write(lin2, LOW); exp1->write(lin3, LOW); exp1->write(lin4, LOW); exp1->write(l[i],HIGH); exp1->update(); exp1->update(); if(exp1->read(col1)) { t = i*3+1; break; } if(exp1->read(col2)) { t = i*3+2; break; } if(exp1->read(col3)) { t = i*3+3; break; } } if (t > 0 ){ if (t >= 1 && t<=9){ return char(t+48); } //48--> ASCII: o charactere '1' na tabela ascii é 49º item, o '2' é o 50º item e assim por diante if (t==10) { return '*'; } if (t==11) { return '0'; } if (t==12) { return '#'; } } return '\0'; } /**************************************************************** *********fim da funcao pra ler teclado matricial com 595 e 165*** *****************************************************************/ //Criando um objeto da classe LiquidCrystal e //inicializando com os pinos da interface. LiquidCrystal lcd(7, 6, 5, 4, 3, 2); //esses pinos, são os pinos do 595 e não do arduino /**************************************************************** ********************************setup e loop********************** *****************************************************************/ void setup() { exp1 = new Expansor74HC595_74HC165(PIN_CLOCK, PIN_LATCH, PIN_DATA, 2, 2); lcd.begin(16, 2); Serial.begin(9600); } unsigned long millis_alt = 0; void loop() { if ( (millis() - millis_alt) > 1000 ) { lcd.setCursor(0,0); lcd.print(millis()); exp1->write(15, !exp1->read(15)); exp1->update(); millis_alt = millis(); } char t = get_tecla(); if (t != '\0'){ lcd.setCursor(0,1); lcd.print(t); } } /**************************************************************** ********************************fim setup e loop****************** *****************************************************************/