a montagem do circuito, para expansão de entradas e saídas, pode ser visto nesse link.
http://fabianoallex.blogspot.com.br/2015/06/arduino-74hc595-e-74hc165-juntos.html
a explicação sobre o teclado matricial, pode ser visto aqui
http://fabianoallex.blogspot.com.br/2015/06/arduino-teclado-matricial-com-74hc595-e.html
Display LCD
Para ligar o Display LCD no Arduino, há uma biblioteca específica, que faz a comunicação entre os pinos do Arduino e o Display, porém nesse exemplo, o display não irá se comunicar diretamente com o Arduino, e sim com um dos 595 que são controlados pelo Arduino. Então para conseguir fazer a comunicação entre o Arduino e o Display LCD, foi necessário fazer alterações na biblioteca disponibilizada para tal. Como a biblioteca foi escrita para se comunicar com os pinos do Arduino, foi necessário, substituir todas as chamadas feitas a digitalWrite(pin, value) para exp1->write(pin, value). E todas as referencias a pinMode(pin, mode) foram removidas.
Essas alterações não foram feitas diretamente na biblioteca, o que eu fiz, foi copiar o conteúdo da biblioteca e colar dentro da sketch e fazer as devidas alterações, como pode ser visto no código-fonte abaixo. Ainda não criei uma biblioteca específica para isso, pois ainda não terminei de fazer todos os testes, então por enquanto, é assim mesmo que vai funcionar.
Vídeo
Código-Fonte:
/********************************************************************************************
*******************CLASSE Expansor74HC595_74HC165 INICIO*********************************
*********************************************************************************************/
class Expansor74HC595_74HC165 {
private:
int _pin_clock;
int _pin_latch;
int _pin_data;
byte* _pins_out;
byte* _pins_in;
int _num_cis_out;
int _num_cis_in;
public:
Expansor74HC595_74HC165(int pin_clock, int pin_latch, int pin_data, int num_cis_out, int num_cis_in){
_pin_clock = pin_clock;
_pin_latch = pin_latch;
_pin_data = pin_data;
_num_cis_out = num_cis_out;
_num_cis_in = num_cis_in;
_pins_out = new byte[num_cis_out];
_pins_in = new byte[num_cis_in];
pinMode(_pin_clock,OUTPUT);
pinMode(_pin_latch,OUTPUT);
clear();
}
void clear(){
for (int i=0; i<_num_cis_out; i++){
_pins_out[i] = B00000000;
}
update();
}
void update(){
digitalWrite(_pin_clock, LOW);
digitalWrite(_pin_latch, LOW);
digitalWrite(_pin_latch, HIGH);
for(int i=max(_num_cis_in, _num_cis_out) * 8 - 1; i>=0; i-- ) { //max -->o for vai até o que tiver mais, ou entradas, ou saidas
int pos = i / 8;
int pin = 7-(i % 8);
if (i < _num_cis_in * 8){
pinMode(_pin_data, INPUT);
if ( digitalRead(_pin_data) ){
_pins_in[pos] |= (1 << pin); //set a bit HIGH
} else {
_pins_in[pos] &= ~(1 << pin); //set a bit LOW
}
}
if (i < _num_cis_out * 8){
pinMode(_pin_data, OUTPUT);
digitalWrite(_pin_data, (_pins_out[pos] & (1 << pin)) != 0 );
}
digitalWrite(_pin_clock, HIGH);
digitalWrite(_pin_clock, LOW);
}
digitalWrite(_pin_latch, LOW);
digitalWrite(_pin_latch, HIGH);
pinMode(_pin_data, INPUT);
}
int read(int pin){
int pos = pin / 8;
pin = 7-(pin % 8);
if (pos > _num_cis_out) {
pos = pos - _num_cis_out;
return ( (_pins_in[pos] & (1 << pin)) != 0 );
} else {
return ( (_pins_out[pos] & (1 << pin)) != 0 );
}
}
byte readByte(int num_ci) {
if (num_ci >= _num_cis_out) {
num_ci = num_ci - _num_cis_out;
return _pins_in[num_ci];
} else {
return _pins_out[num_ci];
}
}
void write(int pin, int value){
if (pin >= _num_cis_out*8) { return; }
int pos = pin / 8; //pos -> indica qual ci será atualizado.
pin = 7-(pin % 8);
if (pos > _num_cis_out) {
return; //se estiver tentando escrever um pino de entrada, apenas retorna, sem fazer nada.
} else {
if (value){
_pins_out[pos] |= (1 << pin); //set a bit HIGH
} else {
_pins_out[pos] &= ~(1 << pin); //set a bit LOW
}
}
}
void writeByte(int num_ci, byte b, int first = MSBFIRST) {
if (num_ci > _num_cis_out) {
return; //se estiver tentando escrever um pino de entrada, apenas retorna, sem fazer nada.
}
if (first == LSBFIRST) {
byte r=0;
for(int i=0;i<8;i++) {
r |= ((b>>i) & 0b1)<<(7-i);
}
b = r;
}
_pins_out[num_ci] = b;
} ;
};
/********************************************************************************************
*******************CLASSE Expansor74HC595_74HC165 FIM ***********************************
*********************************************************************************************/
/********************************************************************************************
*******************ponteiro para o expansor a ser instanciado INICIO **********************
*********************************************************************************************/
Expansor74HC595_74HC165 * exp1;
/********************************************************************************************
*******************ponteiro para o expansor a ser instanciado FIM *************************
*********************************************************************************************/
/********************************************************************************************
*******************CLASSE LiquidCrystal INICIO ********************************************
*********************************************************************************************/
#include <inttypes.h>
#include "Print.h"
// commands
#define LCD_CLEARDISPLAY 0x01
#define LCD_RETURNHOME 0x02
#define LCD_ENTRYMODESET 0x04
#define LCD_DISPLAYCONTROL 0x08
#define LCD_CURSORSHIFT 0x10
#define LCD_FUNCTIONSET 0x20
#define LCD_SETCGRAMADDR 0x40
#define LCD_SETDDRAMADDR 0x80
// flags for display entry mode
#define LCD_ENTRYRIGHT 0x00
#define LCD_ENTRYLEFT 0x02
#define LCD_ENTRYSHIFTINCREMENT 0x01
#define LCD_ENTRYSHIFTDECREMENT 0x00
// flags for display on/off control
#define LCD_DISPLAYON 0x04
#define LCD_DISPLAYOFF 0x00
#define LCD_CURSORON 0x02
#define LCD_CURSOROFF 0x00
#define LCD_BLINKON 0x01
#define LCD_BLINKOFF 0x00
// flags for display/cursor shift
#define LCD_DISPLAYMOVE 0x08
#define LCD_CURSORMOVE 0x00
#define LCD_MOVERIGHT 0x04
#define LCD_MOVELEFT 0x00
// flags for function set
#define LCD_8BITMODE 0x10
#define LCD_4BITMODE 0x00
#define LCD_2LINE 0x08
#define LCD_1LINE 0x00
#define LCD_5x10DOTS 0x04
#define LCD_5x8DOTS 0x00
class LiquidCrystal : public Print {
public:
LiquidCrystal(uint8_t rs, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7);
LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7);
LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3);
LiquidCrystal(uint8_t rs, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3);
void init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7);
void begin(uint8_t cols, uint8_t rows, uint8_t charsize = LCD_5x8DOTS);
void clear();
void home();
void noDisplay();
void display();
void noBlink();
void blink();
void noCursor();
void cursor();
void scrollDisplayLeft();
void scrollDisplayRight();
void leftToRight();
void rightToLeft();
void autoscroll();
void noAutoscroll();
void setRowOffsets(int row1, int row2, int row3, int row4);
void createChar(uint8_t, uint8_t[]);
void setCursor(uint8_t, uint8_t);
virtual size_t write(uint8_t);
void command(uint8_t);
using Print::write;
private:
void send(uint8_t, uint8_t);
void write4bits(uint8_t);
void write8bits(uint8_t);
void pulseEnable();
uint8_t _rs_pin; // LOW: command. HIGH: character.
uint8_t _rw_pin; // LOW: write to LCD. HIGH: read from LCD.
uint8_t _enable_pin; // activated by a HIGH pulse.
uint8_t _data_pins[8];
uint8_t _displayfunction;
uint8_t _displaycontrol;
uint8_t _displaymode;
uint8_t _initialized;
uint8_t _numlines;
uint8_t _row_offsets[4];
};
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "Arduino.h"
// When the display powers up, it is configured as follows:
//
// 1. Display clear
// 2. Function set:
// DL = 1; 8-bit interface data
// N = 0; 1-line display
// F = 0; 5x8 dot character font
// 3. Display on/off control:
// D = 0; Display off
// C = 0; Cursor off
// B = 0; Blinking off
// 4. Entry mode set:
// I/D = 1; Increment by 1
// S = 0; No shift
//
// Note, however, that resetting the Arduino doesn't reset the LCD, so we
// can't assume that its in that state when a sketch starts (and the
// LiquidCrystal constructor is called).
LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
{
init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7);
}
LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
{
init(0, rs, 255, enable, d0, d1, d2, d3, d4, d5, d6, d7);
}
LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3)
{
init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0);
}
LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3)
{
init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0);
}
void LiquidCrystal::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable,
uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3,
uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7)
{
_rs_pin = rs;
_rw_pin = rw;
_enable_pin = enable;
_data_pins[0] = d0;
_data_pins[1] = d1;
_data_pins[2] = d2;
_data_pins[3] = d3;
_data_pins[4] = d4;
_data_pins[5] = d5;
_data_pins[6] = d6;
_data_pins[7] = d7;
//pinMode(_rs_pin, OUTPUT);
// we can save 1 pin by not using RW. Indicate by passing 255 instead of pin#
if (_rw_pin != 255) {
//pinMode(_rw_pin, OUTPUT);
}
//pinMode(_enable_pin, OUTPUT);
if (fourbitmode)
_displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS;
else
_displayfunction = LCD_8BITMODE | LCD_1LINE | LCD_5x8DOTS;
begin(16, 1);
}
void LiquidCrystal::begin(uint8_t cols, uint8_t lines, uint8_t dotsize) {
if (lines > 1) {
_displayfunction |= LCD_2LINE;
}
_numlines = lines;
setRowOffsets(0x00, 0x40, 0x00 + cols, 0x40 + cols);
// for some 1 line displays you can select a 10 pixel high font
if ((dotsize != LCD_5x8DOTS) && (lines == 1)) {
_displayfunction |= LCD_5x10DOTS;
}
// SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
// according to datasheet, we need at least 40ms after power rises above 2.7V
// before sending commands. Arduino can turn on way before 4.5V so we'll wait 50
delayMicroseconds(50000);
// Now we pull both RS and R/W low to begin commands
exp1->write(_rs_pin, LOW);
exp1->write(_enable_pin, LOW);
if (_rw_pin != 255) {
exp1->write(_rw_pin, LOW);
}
exp1->update();
//put the LCD into 4 bit or 8 bit mode
if (! (_displayfunction & LCD_8BITMODE)) {
// this is according to the hitachi HD44780 datasheet
// figure 24, pg 46
// we start in 8bit mode, try to set 4 bit mode
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// second try
write4bits(0x03);
delayMicroseconds(4500); // wait min 4.1ms
// third go!
write4bits(0x03);
delayMicroseconds(150);
// finally, set to 4-bit interface
write4bits(0x02);
} else {
// this is according to the hitachi HD44780 datasheet
// page 45 figure 23
// Send function set command sequence
command(LCD_FUNCTIONSET | _displayfunction);
delayMicroseconds(4500); // wait more than 4.1ms
// second try
command(LCD_FUNCTIONSET | _displayfunction);
delayMicroseconds(150);
// third go
command(LCD_FUNCTIONSET | _displayfunction);
}
// finally, set # lines, font size, etc.
command(LCD_FUNCTIONSET | _displayfunction);
// turn the display on with no cursor or blinking default
_displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;
display();
// clear it off
clear();
// Initialize to default text direction (for romance languages)
_displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;
// set the entry mode
command(LCD_ENTRYMODESET | _displaymode);
}
void LiquidCrystal::setRowOffsets(int row0, int row1, int row2, int row3)
{
_row_offsets[0] = row0;
_row_offsets[1] = row1;
_row_offsets[2] = row2;
_row_offsets[3] = row3;
}
/********** high level commands, for the user! */
void LiquidCrystal::clear()
{
command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero
delayMicroseconds(2000); // this command takes a long time!
}
void LiquidCrystal::home()
{
command(LCD_RETURNHOME); // set cursor position to zero
delayMicroseconds(2000); // this command takes a long time!
}
void LiquidCrystal::setCursor(uint8_t col, uint8_t row)
{
const size_t max_lines = sizeof(_row_offsets) / sizeof(*_row_offsets);
if ( row >= max_lines ) {
row = max_lines - 1; // we count rows starting w/0
}
if ( row >= _numlines ) {
row = _numlines - 1; // we count rows starting w/0
}
command(LCD_SETDDRAMADDR | (col + _row_offsets[row]));
}
// Turn the display on/off (quickly)
void LiquidCrystal::noDisplay() {
_displaycontrol &= ~LCD_DISPLAYON;
command(LCD_DISPLAYCONTROL | _displaycontrol);
}
void LiquidCrystal::display() {
_displaycontrol |= LCD_DISPLAYON;
command(LCD_DISPLAYCONTROL | _displaycontrol);
}
// Turns the underline cursor on/off
void LiquidCrystal::noCursor() {
_displaycontrol &= ~LCD_CURSORON;
command(LCD_DISPLAYCONTROL | _displaycontrol);
}
void LiquidCrystal::cursor() {
_displaycontrol |= LCD_CURSORON;
command(LCD_DISPLAYCONTROL | _displaycontrol);
}
// Turn on and off the blinking cursor
void LiquidCrystal::noBlink() {
_displaycontrol &= ~LCD_BLINKON;
command(LCD_DISPLAYCONTROL | _displaycontrol);
}
void LiquidCrystal::blink() {
_displaycontrol |= LCD_BLINKON;
command(LCD_DISPLAYCONTROL | _displaycontrol);
}
// These commands scroll the display without changing the RAM
void LiquidCrystal::scrollDisplayLeft(void) {
command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVELEFT);
}
void LiquidCrystal::scrollDisplayRight(void) {
command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVERIGHT);
}
// This is for text that flows Left to Right
void LiquidCrystal::leftToRight(void) {
_displaymode |= LCD_ENTRYLEFT;
command(LCD_ENTRYMODESET | _displaymode);
}
// This is for text that flows Right to Left
void LiquidCrystal::rightToLeft(void) {
_displaymode &= ~LCD_ENTRYLEFT;
command(LCD_ENTRYMODESET | _displaymode);
}
// This will 'right justify' text from the cursor
void LiquidCrystal::autoscroll(void) {
_displaymode |= LCD_ENTRYSHIFTINCREMENT;
command(LCD_ENTRYMODESET | _displaymode);
}
// This will 'left justify' text from the cursor
void LiquidCrystal::noAutoscroll(void) {
_displaymode &= ~LCD_ENTRYSHIFTINCREMENT;
command(LCD_ENTRYMODESET | _displaymode);
}
// Allows us to fill the first 8 CGRAM locations
// with custom characters
void LiquidCrystal::createChar(uint8_t location, uint8_t charmap[]) {
location &= 0x7; // we only have 8 locations 0-7
command(LCD_SETCGRAMADDR | (location << 3));
for (int i=0; i<8; i++) {
write(charmap[i]);
}
}
/*********** mid level commands, for sending data/cmds */
inline void LiquidCrystal::command(uint8_t value) {
send(value, LOW);
}
inline size_t LiquidCrystal::write(uint8_t value) {
send(value, HIGH);
return 1; // assume sucess
}
/************ low level data pushing commands **********/
// write either command or data, with automatic 4/8-bit selection
void LiquidCrystal::send(uint8_t value, uint8_t mode) {
exp1->write(_rs_pin, mode);
// if there is a RW pin indicated, set it low to Write
if (_rw_pin != 255) {
exp1->write(_rw_pin, LOW);
}
exp1->update();
if (_displayfunction & LCD_8BITMODE) {
write8bits(value);
} else {
write4bits(value>>4);
write4bits(value);
}
}
void LiquidCrystal::pulseEnable(void) {
exp1->write(_enable_pin, LOW);
exp1->update();
delayMicroseconds(1);
exp1->write(_enable_pin, HIGH);
exp1->update();
delayMicroseconds(1); // enable pulse must be >450ns
exp1->write(_enable_pin, LOW);
exp1->update();
delayMicroseconds(100); // commands need > 37us to settle
}
void LiquidCrystal::write4bits(uint8_t value) {
for (int i = 0; i < 4; i++) {
//pinMode(_data_pins[i], OUTPUT);
exp1->write(_data_pins[i], (value >> i) & 0x01);
}
exp1->update();
pulseEnable();
}
void LiquidCrystal::write8bits(uint8_t value) {
for (int i = 0; i < 8; i++) {
//pinMode(_data_pins[i], OUTPUT);
exp1->write(_data_pins[i], (value >> i) & 0x01);
}
exp1->update();
pulseEnable();
}
/********************************************************************************************
*******************CLASSE LiquidCrystal FIM ***********************************************
*********************************************************************************************/
const int PIN_CLOCK = 4;
const int PIN_LATCH = 7;
const int PIN_DATA = 12;
/****************************************************************
*********funcao pra ler teclado matricial com 595 e 165**********
*****************************************************************/
#define GET_PIN(num_ci, pos) num_ci*8+pos
#define col1 GET_PIN(3, 7) //pino do CI 3 (QUARTO CI) 165 - 31
#define col2 GET_PIN(3, 6) //pino do CI 3 (QUARTO CI) 165 - 30
#define col3 GET_PIN(3, 5) //pino do CI 3 (QUARTO CI) 165 - 29
#define lin1 GET_PIN(1, 4) //pino do CI 1 (SEGUNDO CI) 595 - 12
#define lin2 GET_PIN(1, 3) //pino do CI 1 (SEGUNDO CI) 595 - 11
#define lin3 GET_PIN(1, 2) //pino do CI 1 (SEGUNDO CI) 595 - 10
#define lin4 GET_PIN(1, 1) //pino do CI 1 (SEGUNDO CI) 595 - 9
char get_tecla(){
int l[]={lin1, lin2, lin3, lin4}; // Array de 4 posições contendo os 4 pinos de linhas
int i = 0, k = 0, t = 0;
for (i=0; i<4; i++) {
exp1->write(lin1, LOW);
exp1->write(lin2, LOW);
exp1->write(lin3, LOW);
exp1->write(lin4, LOW);
exp1->write(l[i],HIGH);
exp1->update();
exp1->update();
if(exp1->read(col1)) { t = i*3+1; break; }
if(exp1->read(col2)) { t = i*3+2; break; }
if(exp1->read(col3)) { t = i*3+3; break; }
}
if (t > 0 ){
if (t >= 1 && t<=9){ return char(t+48); } //48--> ASCII: o charactere '1' na tabela ascii é 49º item, o '2' é o 50º item e assim por diante
if (t==10) { return '*'; }
if (t==11) { return '0'; }
if (t==12) { return '#'; }
}
return '\0';
}
/****************************************************************
*********fim da funcao pra ler teclado matricial com 595 e 165***
*****************************************************************/
//Criando um objeto da classe LiquidCrystal e
//inicializando com os pinos da interface.
LiquidCrystal lcd(7, 6, 5, 4, 3, 2); //esses pinos, são os pinos do 595 e não do arduino
/****************************************************************
********************************setup e loop**********************
*****************************************************************/
void setup() {
exp1 = new Expansor74HC595_74HC165(PIN_CLOCK, PIN_LATCH, PIN_DATA, 2, 2);
lcd.begin(16, 2);
Serial.begin(9600);
}
unsigned long millis_alt = 0;
void loop() {
if ( (millis() - millis_alt) > 1000 ) {
lcd.setCursor(0,0);
lcd.print(millis());
exp1->write(15, !exp1->read(15));
exp1->update();
millis_alt = millis();
}
char t = get_tecla();
if (t != '\0'){
lcd.setCursor(0,1);
lcd.print(t);
}
}
/****************************************************************
********************************fim setup e loop******************
*****************************************************************/
Bagaimana jika 74hc165 sebagai input button push(pulldown/pull up).. dan 74hc595 sebagai output led ?
ResponderExcluir