Claro que é uma versão bem mais simples. Mas a ideia é ser simples mesmo.
Veja outros jogos que já implementei:
Snake Game: http://fabianoallex.blogspot.com.br/2016/05/arduino-snake-game-com-display-lcd-e.html
Race Game: http://fabianoallex.blogspot.com.br/2016/06/arduino-race-game-com-display-lcd.html
Vídeo
Código-Fonte:
/* Fabiano A. Arndt - 2016 www.youtube.com/user/fabianoallex www.facebook.com/dicasarduino fabianoallex@gmail.com */ #include <LiquidCrystal.h> /************************************************************************************************************* *******************************BIT ARRAY ********************************************************************* ************************************************************************************************************** mais informações aqui: http://fabianoallex.blogspot.com.br/2015/09/arduino-array-de-bits.html **************************************************************************************************************/ class BitArray2D { private: unsigned int _rows; unsigned int _columns; unsigned int _cols_array; //pra cada 8 colunas, 1 byte é usado byte** _bits; public: BitArray2D(unsigned int rows, unsigned int columns){ _rows = rows; _columns = columns; _cols_array = columns/8 + (_columns%8 ? 1 : 0) + 1; //divide por 8 o número de colunas _bits = (byte **)malloc(_rows * sizeof(byte *)); for(int i=0;i<_rows;i++){ _bits[i] = (byte *)malloc( _cols_array * sizeof(byte)); } //cria varios arrays clear(); } unsigned int rows(){ return _rows; } unsigned int columns(){ return _columns; } void clear() { for(int i=0;i<_rows;i++){ for(int j=0; j<_cols_array;j++) { _bits[i][j] = B00000000; } } } void write(unsigned int row, unsigned int column, int value){ byte b = _bits[row][ column/8 + (column%8 ? 1 : 0) ]; unsigned int bit = column%8; if (value) { b |= (1 << bit); } else { b &= ~(1 << bit); } _bits[row][ column/8 + (column%8 ? 1 : 0) ] = b; } void write(byte value){ for(int i=0;i<_rows;i++){ for(int j=0; j<_cols_array;j++) { _bits[i][j] = value ? B11111111 : B00000000; } } } int read(unsigned int row, unsigned int column){ byte b = _bits[row][ column/8 + (column%8 ? 1 : 0) ]; unsigned int bit = column%8; return (b & (1 << bit)) != 0; } void toggle(unsigned int row, unsigned int column){ write(row, column, !read(row, column)); } void toggle(){ for(int i=0;i<_rows;i++){ for(int j=0; j<_columns;j++) { toggle(i,j); } } } }; /************************************************************************************************************* *******************************FIM BIT ARRAY ***************************************************************** **************************************************************************************************************/ /************************************************************************************************************* ************************************CLASSE UNIQUE RANDOM****************************************************** ************************************************************************************************************** mais informações aqui: http://fabianoallex.blogspot.com.br/2015/09/arduino-numeros-aleatorio-repetidos-e.html *************************************************************************************************************/ class UniqueRandom{ private: int _index; int _min; int _max; int _size; int* _list; void _init(int min, int max) { _list = 0; if (min < max) { _min = min; _max = max; } else { _min = max; _max = min; } _size = _max - _min; _index = 0; } public: UniqueRandom(int max) { _init(0, max); randomize(); } //construtor com 1 parametro UniqueRandom(int min, int max) { _init(min, max); randomize(); } //construtor com 2 parametros void randomize() { _index = 0; if (_list == 0) { _list = (int*) malloc(size() * sizeof(int)); } for (int i=0; i<size(); i++) { _list[i] = _min+i; } //preenche a lista do menor ao maior valor //embaralha a lista for (int i=0; i<size(); i++) { int r = random(0, size()); //sorteia uma posição qualquer int aux = _list[i]; _list[i] = _list[r]; _list[r] = aux; } } int next() { //retorna o proximo numero da lista int n = _list[_index++]; if (_index >= size() ) { _index = 0;} //após recuper o ultimo numero, recomeça na posicao 0 return n; } void first() { _index = 0; } boolean eof() { return size() == _index+1; } int size() { return _size; } int getIndex() { return _index; } ~UniqueRandom(){ free ( _list ); } //destrutor }; /************************************************************************************************************* ************************************FIM CLASSE UNIQUE RANDOM************************************************** *************************************************************************************************************/ /************************************************************************************************************* *******************************CLASSE WALL DEFENDER GAME****************************************************** **************************************************************************************************************/ struct Position { byte lin : 4; //maximo 15 byte col : 4; //maximo 15, mas será no máximo 6 EM DISPLAY 16X2 E TERÁ 12 EM DISPLAY 20X4. PARA MAIS DE 15 LINHAS. ALTERAR AQUI }; const int WALL_DEFENDER_MAX_WALL_HIGH = 10; //quantidade maxima de obstáculos na tela const int WALL_DEFENDER_MAX_ENEMY = 10; //quantidade maxima de obstáculos na tela const int WALL_DEFENDER_TIME_INIT = 700; //tempo entre deslocamento dos obstáculos const int WALL_DEFENDER_TIME_INC = 10; //incremento da velocidade enum WallDefenderGameStatus { WALL_GAME_ON, WALL_GAME_OVER }; enum WallShootStatus {WALL_SHOOT_LEFT, WALL_SHOOT_RIGHT, WALL_SHOOT_STOP}; enum Direction { DIR_STOP, DIR_TOP, DIR_LEFT, DIR_BOTTOM, DIR_RIGHT}; struct Enemy{ Position pos; Direction dir; }; class WallDefenderGame { private: BitArray2D * _display; Position _position; Position _shoot; WallShootStatus _shootStatus; Position _wall[WALL_DEFENDER_MAX_WALL_HIGH]; Enemy _enemys[WALL_DEFENDER_MAX_ENEMY]; byte _lengthWall; byte _controlEnemys : 2; //máximo = 3 B11 byte _countUpdate : 3; //maximo = 5 B101 Direction _direction; unsigned long _last_millis; unsigned long _last_millis_player; unsigned long _last_millis_shoot; int _time; int _score; int _lengthEnemy; WallDefenderGameStatus _wallDefenderGameStatus; UniqueRandom * _ur; //utilizado no game over void _gameOver(){ _wallDefenderGameStatus = WALL_GAME_OVER; _direction = DIR_STOP; _time = 20; } void _inc_speed(){ _score++; _time -= WALL_DEFENDER_TIME_INC; } void _generateWall() { _lengthWall = 0; for (int i=0;i<(_display->rows()-2)*2;i++) { _wall[i].lin = i<(_display->rows()-2) ? i+1 : i+1-_display->rows()+2; _wall[i].col = i<(_display->rows()-2) ? _display->columns()/2-1 : _display->columns()/2; _lengthWall++; } } void _start(){ for (int i=0; i<WALL_DEFENDER_MAX_ENEMY; i++){ _enemys[i].dir == DIR_STOP; _enemys[i].pos.lin=0; _enemys[i].pos.col=0; } _score = 0; _time = WALL_DEFENDER_TIME_INIT; _last_millis = 0; _last_millis_player = 0; _position.lin = 0; _position.col = _display->columns() / 2 + 1; _direction = DIR_STOP; _wallDefenderGameStatus = WALL_GAME_ON; _shootStatus = WALL_SHOOT_STOP; _generateWall(); } void _generateEnemys() { Serial.println(_lengthEnemy); if (_controlEnemys == 0 && _lengthEnemy < WALL_DEFENDER_MAX_ENEMY){ _lengthEnemy++; int r1 = random(0, _display->rows()); int r2 = random(0, 2); for (int i=0; i<WALL_DEFENDER_MAX_ENEMY; i++){ if (_enemys[i].dir == DIR_STOP){ _enemys[i].dir = (r2 == 0) ? DIR_RIGHT : DIR_LEFT; _enemys[i].pos.col = (r2 == 0) ? 0 : _display->columns()-1; _enemys[i].pos.lin = r1; break; } } } _controlEnemys = (_controlEnemys < 2) ? _controlEnemys+1 : 0; //a cada 4 atualizacoes gera novos obstáculos } void _runShoot(){ if (_shootStatus == WALL_SHOOT_LEFT ) { if (_shoot.col == 0) { _shootStatus = WALL_SHOOT_STOP; } else { _shoot.col--; } } if (_shootStatus == WALL_SHOOT_RIGHT) { if (_shoot.col == _display->columns()-1) { _shootStatus = WALL_SHOOT_STOP; } else { _shoot.col++; } } } void _runGameOver(){ int r = _ur->next(); int lin = (r / _display->columns()); int col = (r % _display->columns()); _display->write(lin, col, HIGH ); if ( _ur->getIndex() == (_ur->size()-1) ) { _ur->randomize(); _ur->first(); _start(); Serial.println("teste"); } } void _runPlayer(){ if (_direction == DIR_TOP && _position.lin > 0 ) { _position.lin--; } if (_direction == DIR_BOTTOM && _position.lin < _display->rows()-1 ) { _position.lin++; } if (_direction == DIR_LEFT && _position.col > 0 ) { _position.col--; } if (_direction == DIR_RIGHT && _position.col < _display->columns()-1 ) { _position.col++; } _direction = DIR_STOP; //depois de mover, mantem parado. } void _runEnemys() { /*move os inimigos*/ byte contRemove = 0; for (int i=0; i<WALL_DEFENDER_MAX_ENEMY; i++) { if (_enemys[i].dir == DIR_RIGHT && _enemys[i].pos.col == _display->columns()-1){ contRemove++; _enemys[i].dir = DIR_STOP; } if (_enemys[i].dir == DIR_LEFT && _enemys[i].pos.col == 0) { contRemove++; _enemys[i].dir = DIR_STOP; } if (_enemys[i].dir != DIR_STOP ) { _enemys[i].dir == DIR_LEFT ? _enemys[i].pos.col-- : _enemys[i].pos.col++; } } if (contRemove > 0){ _lengthEnemy -= contRemove; } _generateEnemys(); _countUpdate++; if (_countUpdate >= 5){ _inc_speed(); _countUpdate = 0; } } void _updateDisplay(){ //verifica se o tiro colidiu com o inimigo for (int i=0; i<WALL_DEFENDER_MAX_ENEMY; i++){ if (_enemys[i].dir != DIR_STOP ) { if (_enemys[i].pos.lin == _shoot.lin && _enemys[i].pos.col == _shoot.col) { _lengthEnemy--; _enemys[i].dir = DIR_STOP; _shootStatus = WALL_SHOOT_STOP;} if (_enemys[i].pos.lin == _position.lin && _enemys[i].pos.col == _position.col) { _gameOver(); } } } //verifica se colidiu na parede for (int i=0; i<WALL_DEFENDER_MAX_ENEMY; i++){ for (int p=0; p<_lengthWall; p++) { if (_enemys[i].dir != DIR_STOP ) { if (_enemys[i].pos.lin == _wall[p].lin && _enemys[i].pos.col == _wall[p].col) { _gameOver(); } } } } if (_wallDefenderGameStatus == WALL_GAME_ON) { _display->clear(); } for (int lin=0; lin<_display->rows(); lin++) { for (int col=0; col<_display->columns(); col++) { for (int p=0; p<_lengthWall; p++){ boolean val = _wall[p].col==col && _wall[p].lin==lin; if (val) { _display->write( lin, col, val ); break;} } for (int p=0; p<WALL_DEFENDER_MAX_ENEMY; p++) { if (_enemys[p].dir != DIR_STOP){ boolean val = _enemys[p].pos.col==col && _enemys[p].pos.lin==lin; if (val) { _display->write( lin, col, val ); break;} } } } } _display->write(_position.lin, _position.col, HIGH); if (_shootStatus != WALL_SHOOT_STOP) { _display->write(_shoot.lin, _shoot.col, HIGH); } } public: WallDefenderGame(BitArray2D * display){ _display = display; _ur = new UniqueRandom( _display->rows() * _display->columns() ); _lengthWall = 0; _lengthEnemy = 0; _start(); } void left() { _direction = DIR_LEFT; } void right() { _direction = DIR_RIGHT; } void top() { _direction = DIR_TOP; } void bottom() { _direction = DIR_BOTTOM; } int getScore(){ return _score; } Position getPositionPlayer() { return _position; } void shoot(){ if (_shootStatus == WALL_SHOOT_STOP){ _shoot.lin = _position.lin; _shoot.col = _position.col; _shootStatus = (_shoot.col <= _display->columns() / 2-1) ? WALL_SHOOT_LEFT : WALL_SHOOT_RIGHT; } } int update(){ int r = false; if (millis() - _last_millis > _time) { r = true; _last_millis = millis(); if (_wallDefenderGameStatus == WALL_GAME_ON) { _runEnemys(); } if (_wallDefenderGameStatus == WALL_GAME_OVER) { _runGameOver(); } } if (millis() - _last_millis_player > 70){ r = true; _last_millis_player = millis(); if (_wallDefenderGameStatus == WALL_GAME_ON) { _runPlayer(); } if (_wallDefenderGameStatus == WALL_GAME_OVER) { _runGameOver(); } } if (millis() - _last_millis_shoot > 50){ r = true; _last_millis_shoot = millis(); if (_wallDefenderGameStatus == WALL_GAME_ON) { _runShoot(); } if (_wallDefenderGameStatus == WALL_GAME_OVER) { _runGameOver(); } } if (r) { _updateDisplay(); } return r; //r-->indica se houve mudança no display } }; /************************************************************************************************************* *******************************FIM CLASSE WALL DEFENDER GAME************************************************** **************************************************************************************************************/ /************************************************************************************************************* ************************************CLASSE ROTARY ENCODER***************************************************** mais informações: http://fabianoallex.blogspot.com.br/2016/05/arduino-rotary-encoder.html *************************************************************************************************************/ #define ROTARY_NO_BUTTON 255 struct RotaryEncoderLimits{ int min; int max; }; class RotaryEncoder { private: byte _pin_clk; byte _pin_dt; byte _pin_sw; volatile byte _num_results; volatile int _result; volatile int * _results; byte _index_result; RotaryEncoderLimits * _limits; byte _a : 1; byte _b : 1; public: RotaryEncoder(byte pin_clk, byte pin_dt, byte pin_sw = ROTARY_NO_BUTTON, byte num_results=1, RotaryEncoderLimits * limits=0){ //parametro do botao opcional _pin_clk = pin_clk; _pin_dt = pin_dt; _pin_sw = pin_sw; pinMode(_pin_clk, INPUT); pinMode(_pin_dt, INPUT); if (_pin_sw != ROTARY_NO_BUTTON){ pinMode(_pin_sw, INPUT); digitalWrite(_pin_sw, HIGH); } if (num_results == 0) { num_results = 1; } _num_results = num_results; _results = new int[_num_results]; for (int i; i<_num_results; i++){ _results[i] = (limits) ? limits[i].min : 0; } _index_result = 0; _limits = limits; _a = false; _b = false; } byte getIndex() { return _index_result; } void next() { _index_result++; if (_index_result >= _num_results) { _index_result = 0; } } void update_a() { _result = 0; delay (1); if( digitalRead(_pin_clk) != _a ) { _a = !_a; if ( _a && !_b ) { _result = -1; } } if (_results[_index_result]+_result >= _limits[_index_result].min && _results[_index_result]+_result <= _limits[_index_result].max ) { _results[_index_result] += _result; } } void update_b() { _result = 0; delay (1); if( digitalRead(_pin_dt) != _b ) { _b = !_b; if ( _b && !_a ) { _result = +1; } } if (_results[_index_result]+_result >= _limits[_index_result].min && _results[_index_result]+_result <= _limits[_index_result].max ) { _results[_index_result] += _result; } } int read(){ return _result; } //retorn -1, 0 ou 1. int getValue(int index=-1) { //retorna o valor da variável corrente ou a passada como parametro if (index < 0 ){ return _results[_index_result]; } return _results[index]; } void setValue(int value, int index=-1){ _results[ (index==-1) ? _index_result : index] = value; } //caso a variável inicializa em determinado valor diferente de zero, utilizar esse método. int buttonRead(){ return (_pin_sw == ROTARY_NO_BUTTON) ? LOW : digitalRead(_pin_sw); } }; /************************************************************************************************************* ************************************FIM CLASSE ROTARY ENCODER************************************************* *************************************************************************************************************/ /************************************************************************************************************* *******************************CLASSE GAME LCD**************************************************************** **************************************************************************************************************/ /* 0 1 2 3 4 5 6 *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** */ byte c0[8] = {B11111, B11111, B00000, B11111, B11111, B00000, B11111, B11111 }; byte c1[8] = {B00000, B00000, B00000, B11111, B11111, B00000, B11111, B11111 }; byte c2[8] = {B00000, B00000, B00000, B00000, B00000, B00000, B11111, B11111 }; byte c3[8] = {B11111, B11111, B00000, B11111, B11111, B00000, B00000, B00000 }; byte c4[8] = {B11111, B11111, B00000, B00000, B00000, B00000, B11111, B11111 }; byte c5[8] = {B00000, B00000, B00000, B11111, B11111, B00000, B00000, B00000 }; byte c6[8] = {B11111, B11111, B00000, B00000, B00000, B00000, B00000, B00000 }; class GameLCD { private: LiquidCrystal * _lcd; //ponteiro para um objeto lcd public: void createChars() { _lcd->createChar(0, c0); _lcd->createChar(1, c1); _lcd->createChar(2, c2); _lcd->createChar(3, c3); _lcd->createChar(4, c4); _lcd->createChar(5, c5); _lcd->createChar(6, c6); } GameLCD(LiquidCrystal * lcd) { _lcd = lcd; } void write(byte col, byte row, byte val){ _lcd->setCursor(col, row); if (val == B000) { _lcd->print(" "); } if (val == B111) { _lcd->write((byte)0); } if (val == B011) { _lcd->write((byte)1); } if (val == B001) { _lcd->write((byte)2); } if (val == B110) { _lcd->write((byte)3); } if (val == B101) { _lcd->write((byte)4); } if (val == B010) { _lcd->write((byte)5); } if (val == B100) { _lcd->write((byte)6); } } }; /************************************************************************************************************* *******************************FIM CLASSE GAME LCD*********************************************************** **************************************************************************************************************/ /************************************************************************************************************* *******************************DECLARACAO DOS OBJETOS********************************************************* **************************************************************************************************************/ /* tamanho display real * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ const int LINHAS = 6; const int COLUNAS = 16; LiquidCrystal lcd(12, 11, 10, 9, 8, 7); GameLCD gameLcd(&lcd); BitArray2D ba(LINHAS, COLUNAS); //8 linhas e 20 colunas, usada para armazenar o estado do display WallDefenderGame wall(&ba); RotaryEncoderLimits lim[] = { {-1000,1000} }; //limites máximos e mínimos que as variaveis podem atingir RotaryEncoder re(A0, A1, 4, 1, lim); //pino clk, pino dt, pino sw, variaveis, limites /************************************************************************************************************* *******************************FIM DECLARACAO DOS OBJETOS***************************************************** **************************************************************************************************************/ /************************************************************************************************************* *******************************TRATAMENTO DAS INTERRUPÇÕES**************************************************** **************************************************************************************************************/ //interrupções dos pinos A0 e A1 via Pin Change Interrupt ISR(PCINT1_vect) { volatile static byte lastVal_a0 = LOW; volatile static byte lastVal_a1 = LOW; byte val_a0 = digitalRead(A0); byte val_a1 = digitalRead(A1); if (lastVal_a0 != val_a0){ re.update_a(); lastVal_a0 = val_a0; } if (lastVal_a1 != val_a1){ re.update_b(); lastVal_a1 = val_a1; } } void setup_interrupts(){ //-----PCI - Pin Change Interrupt ---- pinMode(A0,INPUT); // set Pin as Input (default) digitalWrite(A0,HIGH); // enable pullup resistor pinMode(A1,INPUT); // set Pin as Input (default) digitalWrite(A1,HIGH); // enable pullup resistor cli(); PCICR |= 0b00000010; // habilita a porta C - Pin Change Interrupts PCMSK1 |= 0b00000011; // habilita interrupção da porta c nos pinos: PCINT8 (A0) e PCINT9(A1) sei(); } /************************************************************************************************************* *******************************FIM TRATAMENTO DAS INTERRUPÇÕES**************************************************** **************************************************************************************************************/ void update_display() { for (int col=0; col<ba.columns(); col++) { byte lin_lcd = 0; byte cont = 0; byte val = 0; for (int lin=0; lin<ba.rows(); lin++) { if (cont == 0){ val = 0; } val = val << 1; val = val | ba.read(lin, col); cont++; if (cont == 3) { gameLcd.write(col, lin_lcd, val) ; cont = 0; lin_lcd++; } } } } void setup() { Serial.begin(9600); setup_interrupts(); lcd.begin(16, 2); gameLcd.createChars(); randomSeed(analogRead(A2)); re.setValue(0, 0); //inicializa o rotary em 0 } void loop() { static int val_encoder = 0; static boolean change = false; //anti-horario if (re.getValue(0) < val_encoder && !change && wall.getPositionPlayer().lin > 0 && wall.getPositionPlayer().col == 9){ wall.top(); change = true; } if (re.getValue(0) < val_encoder && !change && wall.getPositionPlayer().lin == 0 && wall.getPositionPlayer().col >= 7){ wall.left(); change = true; } if (re.getValue(0) < val_encoder && !change && wall.getPositionPlayer().lin < 5 && wall.getPositionPlayer().col == 6){ wall.bottom(); change = true; } if (re.getValue(0) < val_encoder && !change && wall.getPositionPlayer().lin == 5 && wall.getPositionPlayer().col <= 9){ wall.right(); change = true; } //horario if (re.getValue(0) > val_encoder && !change && wall.getPositionPlayer().lin > 0 && wall.getPositionPlayer().col == 6){ wall.top(); change = true; } if (re.getValue(0) > val_encoder && !change && wall.getPositionPlayer().lin == 5 && wall.getPositionPlayer().col >= 7){ wall.left(); change = true; } if (re.getValue(0) > val_encoder && !change && wall.getPositionPlayer().lin < 5 && wall.getPositionPlayer().col == 9){ wall.bottom(); change = true; } if (re.getValue(0) > val_encoder && !change && wall.getPositionPlayer().lin == 0 && wall.getPositionPlayer().col <= 8){ wall.right(); change = true; } val_encoder = re.getValue(0); if ( wall.update() ) { change = false; update_display(); } //controla o click do botao do enconder static byte b = HIGH; //pra ler apenas uma vez o botao ao pressionar if( re.buttonRead() == LOW && b != re.buttonRead() ) { wall.shoot(); //dispara o tiro delay(50); //debounce meia boca } b = re.buttonRead(); }
Atualização 13/06/2016 - Versão com display de leds 8x8
Implementei uma versão em um display mais apropriado, duas matrizes de leds 8x8. Como a implementação do jogo foi feita utilizando conceitos de orientação a objetos, foi fácil fazer esta versão.
Alguns detalhes sobre a implementação: Para controlar a matriz de leds foi criada uma classe baseada na biblioteca LedControl (na verdade um ctrl+c ctrl+v), mas com algumas modificações, visando deixar a atualização do display mais rápida, mas o código todo está na própria sketch e não em uma biblioteca a parte. Outro detalhe, é que os dois displays, como poder ser visto no vídeo, não estão "alinhados", eles estão cada um posicionado de uma maneira, ou seja, isso significa que foi necessário criar uma rotina para converter linhas e colunas de maneira a mostrar os dados corretamente. Isso foi feito para facilitar o arranjo dos displays da forma mais conveniente.
Vídeo:
Código-fonte:
/* Fabiano A. Arndt - 2016 www.youtube.com/user/fabianoallex www.facebook.com/dicasarduino fabianoallex@gmail.com */ /************************************************************************************************************* *******************************BIT ARRAY ********************************************************************* ************************************************************************************************************** mais informações aqui: http://fabianoallex.blogspot.com.br/2015/09/arduino-array-de-bits.html **************************************************************************************************************/ class BitArray2D { private: unsigned int _rows; unsigned int _columns; unsigned int _cols_array; //pra cada 8 colunas, 1 byte é usado byte** _bits; public: BitArray2D(unsigned int rows, unsigned int columns){ _rows = rows; _columns = columns; _cols_array = columns/8 + (_columns%8 ? 1 : 0) + 1; //divide por 8 o número de colunas _bits = (byte **)malloc(_rows * sizeof(byte *)); for(int i=0;i<_rows;i++){ _bits[i] = (byte *)malloc( _cols_array * sizeof(byte)); } //cria varios arrays clear(); } unsigned int rows(){ return _rows; } unsigned int columns(){ return _columns; } void clear() { for(int i=0;i<_rows;i++){ for(int j=0; j<_cols_array;j++) { _bits[i][j] = B00000000; } } } void write(unsigned int row, unsigned int column, int value){ byte b = _bits[row][ column/8 + (column%8 ? 1 : 0) ]; unsigned int bit = column%8; if (value) { b |= (1 << bit); } else { b &= ~(1 << bit); } _bits[row][ column/8 + (column%8 ? 1 : 0) ] = b; } void write(byte value){ for(int i=0;i<_rows;i++){ for(int j=0; j<_cols_array;j++) { _bits[i][j] = value ? B11111111 : B00000000; } } } int read(unsigned int row, unsigned int column){ byte b = _bits[row][ column/8 + (column%8 ? 1 : 0) ]; unsigned int bit = column%8; return (b & (1 << bit)) != 0; } void toggle(unsigned int row, unsigned int column){ write(row, column, !read(row, column)); } void toggle(){ for(int i=0;i<_rows;i++){ for(int j=0; j<_columns;j++) { toggle(i,j); } } } }; /************************************************************************************************************* *******************************FIM BIT ARRAY ***************************************************************** **************************************************************************************************************/ /************************************************************************************************************* ************************************CLASSE UNIQUE RANDOM****************************************************** ************************************************************************************************************** mais informações aqui: http://fabianoallex.blogspot.com.br/2015/09/arduino-numeros-aleatorio-repetidos-e.html *************************************************************************************************************/ class UniqueRandom{ private: int _index; int _min; int _max; int _size; int* _list; void _init(int min, int max) { _list = 0; if (min < max) { _min = min; _max = max; } else { _min = max; _max = min; } _size = _max - _min; _index = 0; } public: UniqueRandom(int max) { _init(0, max); randomize(); } //construtor com 1 parametro UniqueRandom(int min, int max) { _init(min, max); randomize(); } //construtor com 2 parametros void randomize() { _index = 0; if (_list == 0) { _list = (int*) malloc(size() * sizeof(int)); } for (int i=0; i<size(); i++) { _list[i] = _min+i; } //preenche a lista do menor ao maior valor //embaralha a lista for (int i=0; i<size(); i++) { int r = random(0, size()); //sorteia uma posição qualquer int aux = _list[i]; _list[i] = _list[r]; _list[r] = aux; } } int next() { //retorna o proximo numero da lista int n = _list[_index++]; if (_index >= size() ) { _index = 0;} //após recuper o ultimo numero, recomeça na posicao 0 return n; } void first() { _index = 0; } boolean eof() { return size() == _index+1; } int size() { return _size; } int getIndex() { return _index; } ~UniqueRandom(){ free ( _list ); } //destrutor }; /************************************************************************************************************* ************************************FIM CLASSE UNIQUE RANDOM************************************************** *************************************************************************************************************/ /************************************************************************************************************* *******************************LEDCONTROL ALTERADA************************************************************ mais informações: http://fabianoallex.blogspot.com.br/2015/09/arduino-alteracoes-na-biblioteca.html **************************************************************************************************************/ //the opcodes for the MAX7221 and MAX7219 #define OP_DECODEMODE 9 #define OP_INTENSITY 10 #define OP_SCANLIMIT 11 #define OP_SHUTDOWN 12 #define OP_DISPLAYTEST 15 class LedControl { private : byte spidata[16]; byte * status; int SPI_MOSI; int SPI_CLK; int SPI_CS; int maxDevices; int _auto_send; void spiTransfer(int addr, volatile byte opcode, volatile byte data) { int offset = addr*2; int maxbytes = maxDevices*2; for(int i=0;i<maxbytes;i++) { spidata[i]=(byte)0; } spidata[offset+1] = opcode; spidata[offset] = data; digitalWrite(SPI_CS,LOW); for(int i=maxbytes;i>0;i--) { shiftOut(SPI_MOSI,SPI_CLK,MSBFIRST,spidata[i-1]); } digitalWrite(SPI_CS,HIGH); } public: LedControl(int dataPin, int clkPin, int csPin, int numDevices) { _auto_send = true; SPI_MOSI = dataPin; SPI_CLK = clkPin; SPI_CS = csPin; maxDevices = numDevices; pinMode(SPI_MOSI, OUTPUT); pinMode(SPI_CLK, OUTPUT); pinMode(SPI_CS, OUTPUT); digitalWrite(SPI_CS, HIGH); status = new byte[maxDevices * 8]; //instancia o array de acordo com a quantia de displays usados for(int i=0;i<maxDevices * 8 ;i++) { status[i]=0x00; } for(int i=0;i<maxDevices;i++) { spiTransfer(i, OP_DISPLAYTEST,0); setScanLimit(i, 7); //scanlimit is set to max on startup spiTransfer(i, OP_DECODEMODE,0); //decode is done in source clearDisplay(i); shutdown(i,true); //we go into shutdown-mode on startup } } void startWrite() { _auto_send = false; }; void send() { for (int j=0; j<maxDevices; j++) { int offset = j*8; for(int i=0;i<8;i++) { spiTransfer(j, i+1, status[offset+i]); } } _auto_send = true; } int getDeviceCount(){ return maxDevices; } void shutdown(int addr, bool b){ if(addr<0 || addr>=maxDevices) return; spiTransfer(addr, OP_SHUTDOWN, b ? 0 : 1); } void setScanLimit(int addr, int limit){ if(addr<0 || addr>=maxDevices) return; if(limit>=0 && limit<8) spiTransfer(addr, OP_SCANLIMIT,limit); } void setIntensity(int addr, int intensity) { if(addr<0 || addr>=maxDevices) { return; } if(intensity>=0 && intensity<16) { spiTransfer(addr, OP_INTENSITY, intensity); } } void clearDisplay(int addr){ if(addr<0 || addr>=maxDevices) return; int offset = addr*8; for(int i=0;i<8;i++) { status[offset+i] = 0; if (_auto_send) { spiTransfer(addr, i+1, status[offset+i]); } } } void setLed(int addr, int row, int column, boolean state) { if(addr<0 || addr>=maxDevices) { return; } if(row<0 || row>7 || column<0 || column>7) { return; } int offset = addr*8; byte val = B10000000 >> column; if(state) { status[offset+row] = status[offset+row] | val; } else { val=~val; status[offset+row] = status[offset+row]&val; } if (_auto_send) { spiTransfer(addr, row+1, status[offset+row]); } } void setRow(int addr, int row, byte value) { if(addr<0 || addr>=maxDevices) return; if(row<0 || row>7) return; int offset = addr*8; status[offset+row] = value; if (_auto_send) { spiTransfer(addr, row+1, status[offset+row]); } } void setColumn(int addr, int col, byte value) { if(addr<0 || addr>=maxDevices) return; if(col<0 || col>7) return; byte val; for(int row=0; row<8; row++) { val=value >> (7-row); val=val & 0x01; setLed(addr,row,col,val); } } }; /************************************************************************************************************* *******************************FIM LEDCONTROL ALTERADA******************************************************** **************************************************************************************************************/ /************************************************************************************************************* ************************************CLASSE ROTARY ENCODER***************************************************** mais informações: http://fabianoallex.blogspot.com.br/2016/05/arduino-rotary-encoder.html *************************************************************************************************************/ #define ROTARY_NO_BUTTON 255 struct RotaryEncoderLimits{ int min; int max; }; class RotaryEncoder { private: byte _pin_clk; byte _pin_dt; byte _pin_sw; volatile byte _num_results; volatile int _result; volatile int * _results; byte _index_result; RotaryEncoderLimits * _limits; byte _a : 1; byte _b : 1; public: RotaryEncoder(byte pin_clk, byte pin_dt, byte pin_sw = ROTARY_NO_BUTTON, byte num_results=1, RotaryEncoderLimits * limits=0){ //parametro do botao opcional _pin_clk = pin_clk; _pin_dt = pin_dt; _pin_sw = pin_sw; pinMode(_pin_clk, INPUT); pinMode(_pin_dt, INPUT); if (_pin_sw != ROTARY_NO_BUTTON){ pinMode(_pin_sw, INPUT); digitalWrite(_pin_sw, HIGH); } if (num_results == 0) { num_results = 1; } _num_results = num_results; _results = new int[_num_results]; for (int i; i<_num_results; i++){ _results[i] = (limits) ? limits[i].min : 0; } _index_result = 0; _limits = limits; _a = false; _b = false; } byte getIndex() { return _index_result; } void next() { _index_result++; if (_index_result >= _num_results) { _index_result = 0; } } void update_a() { _result = 0; delay (1); if( digitalRead(_pin_clk) != _a ) { _a = !_a; if ( _a && !_b ) { _result = -1; } } if (_results[_index_result]+_result >= _limits[_index_result].min && _results[_index_result]+_result <= _limits[_index_result].max ) { _results[_index_result] += _result; } } void update_b() { _result = 0; delay (1); if( digitalRead(_pin_dt) != _b ) { _b = !_b; if ( _b && !_a ) { _result = +1; } } if (_results[_index_result]+_result >= _limits[_index_result].min && _results[_index_result]+_result <= _limits[_index_result].max ) { _results[_index_result] += _result; } } int read(){ return _result; } //retorn -1, 0 ou 1. int getValue(int index=-1) { //retorna o valor da variável corrente ou a passada como parametro if (index < 0 ){ return _results[_index_result]; } return _results[index]; } void setValue(int value, int index=-1){ _results[ (index==-1) ? _index_result : index] = value; } //caso a variável inicializa em determinado valor diferente de zero, utilizar esse método. int buttonRead(){ return (_pin_sw == ROTARY_NO_BUTTON) ? LOW : digitalRead(_pin_sw); } }; /************************************************************************************************************* ************************************FIM CLASSE ROTARY ENCODER************************************************* *************************************************************************************************************/ /************************************************************************************************************* *******************************CLASSE WALL DEFENDER GAME****************************************************** **************************************************************************************************************/ struct Position { int lin ; //maximo 15 int col ; //maximo 15, mas será no máximo 6 EM DISPLAY 16X2 E TERÁ 12 EM DISPLAY 20X4. PARA MAIS DE 15 LINHAS. ALTERAR AQUI }; const int WALL_DEFENDER_MAX_WALL_HIGH = 15; //quantidade maxima de inimigos na tela const int WALL_DEFENDER_MAX_ENEMY = 10; //quantidade maxima de obstáculos na tela const int WALL_DEFENDER_TIME_INIT = 700; //tempo entre deslocamento dos inimigos const int WALL_DEFENDER_TIME_INC = 10; //incremento da velocidade enum WallDefenderGameStatus { WALL_GAME_ON, WALL_GAME_OVER }; enum WallShootStatus {WALL_SHOOT_LEFT, WALL_SHOOT_RIGHT, WALL_SHOOT_STOP}; enum Direction { DIR_STOP, DIR_TOP, DIR_LEFT, DIR_BOTTOM, DIR_RIGHT}; struct Enemy{ Position pos; Direction dir; }; class WallDefenderGame { private: BitArray2D * _display; Position _position; Position _shoot; WallShootStatus _shootStatus; Position _wall[WALL_DEFENDER_MAX_WALL_HIGH]; Enemy _enemys[WALL_DEFENDER_MAX_ENEMY]; byte _lengthWall; byte _controlEnemys : 2; //máximo = 3 B11 byte _countUpdate : 3; //maximo = 5 B101 Direction _direction; unsigned long _last_millis; unsigned long _last_millis_player; unsigned long _last_millis_shoot; int _time; int _score; int _lengthEnemy; WallDefenderGameStatus _wallDefenderGameStatus; UniqueRandom * _ur; //utilizado no game over void _gameOver(){ _wallDefenderGameStatus = WALL_GAME_OVER; _direction = DIR_STOP; _time = 20; } void _inc_speed(){ _score++; _time -= WALL_DEFENDER_TIME_INC; } void _generateWall() { _lengthWall = 0; for (int i=0;i<(_display->rows()-2)*2;i++) { _wall[i].lin = i<(_display->rows()-2) ? i+1 : i+1-_display->rows()+2; _wall[i].col = i<(_display->rows()-2) ? _display->columns()/2-1 : _display->columns()/2; _lengthWall++; } } void _start(){ for (int i=0; i<WALL_DEFENDER_MAX_ENEMY; i++){ _enemys[i].dir == DIR_STOP; _enemys[i].pos.lin=0; _enemys[i].pos.col=0; } _score = 0; _time = WALL_DEFENDER_TIME_INIT; _last_millis = 0; _last_millis_player = 0; _position.lin = 0; _position.col = _display->columns() / 2 + 1; _direction = DIR_STOP; _wallDefenderGameStatus = WALL_GAME_ON; _shootStatus = WALL_SHOOT_STOP; _generateWall(); Serial.println("a"); } void _generateEnemys() { Serial.println(_lengthEnemy); if (_controlEnemys == 0 && _lengthEnemy < WALL_DEFENDER_MAX_ENEMY){ _lengthEnemy++; int r1 = random(0, _display->rows()); int r2 = random(0, 2); for (int i=0; i<WALL_DEFENDER_MAX_ENEMY; i++){ if (_enemys[i].dir == DIR_STOP){ _enemys[i].dir = (r2 == 0) ? DIR_RIGHT : DIR_LEFT; _enemys[i].pos.col = (r2 == 0) ? 0 : _display->columns()-1; _enemys[i].pos.lin = r1; break; } } } _controlEnemys = (_controlEnemys < 2) ? _controlEnemys+1 : 0; //a cada 4 atualizacoes gera novos obstáculos } void _runShoot(){ if (_shootStatus == WALL_SHOOT_LEFT ) { if (_shoot.col == 0) { _shootStatus = WALL_SHOOT_STOP; } else { _shoot.col--; } } if (_shootStatus == WALL_SHOOT_RIGHT) { if (_shoot.col == _display->columns()-1) { _shootStatus = WALL_SHOOT_STOP; } else { _shoot.col++; } } } void _runGameOver(){ int r = _ur->next(); int lin = (r / _display->columns()); int col = (r % _display->columns()); _display->write(lin, col, HIGH ); if ( _ur->getIndex() == (_ur->size()-1) ) { _ur->randomize(); _ur->first(); _start(); Serial.println("teste"); } } void _runPlayer(){ if (_direction == DIR_TOP && _position.lin > 0 ) { _position.lin--; } if (_direction == DIR_BOTTOM && _position.lin < _display->rows()-1 ) { _position.lin++; } if (_direction == DIR_LEFT && _position.col > 0 ) { _position.col--; } if (_direction == DIR_RIGHT && _position.col < _display->columns()-1 ) { _position.col++; } _direction = DIR_STOP; //depois de mover, mantem parado. } void _runEnemys() { /*move os inimigos*/ byte contRemove = 0; for (int i=0; i<WALL_DEFENDER_MAX_ENEMY; i++) { if (_enemys[i].dir == DIR_RIGHT && _enemys[i].pos.col == _display->columns()-1){ contRemove++; _enemys[i].dir = DIR_STOP; } if (_enemys[i].dir == DIR_LEFT && _enemys[i].pos.col == 0) { contRemove++; _enemys[i].dir = DIR_STOP; } if (_enemys[i].dir != DIR_STOP ) { _enemys[i].dir == DIR_LEFT ? _enemys[i].pos.col-- : _enemys[i].pos.col++; } } if (contRemove > 0){ _lengthEnemy -= contRemove; } _generateEnemys(); _countUpdate++; if (_countUpdate >= 5){ _inc_speed(); _countUpdate = 0; } } void _updateDisplay(){ //verifica se o tiro colidiu com o inimigo for (int i=0; i<WALL_DEFENDER_MAX_ENEMY; i++){ if (_enemys[i].dir != DIR_STOP ) { if (_enemys[i].pos.lin == _shoot.lin && _enemys[i].pos.col == _shoot.col) { _lengthEnemy--; _enemys[i].dir = DIR_STOP; _shootStatus = WALL_SHOOT_STOP;} if (_enemys[i].pos.lin == _position.lin && _enemys[i].pos.col == _position.col) { _gameOver(); } } } //verifica se colidiu na parede for (int i=0; i<WALL_DEFENDER_MAX_ENEMY; i++){ for (int p=0; p<_lengthWall; p++) { if (_enemys[i].dir != DIR_STOP ) { if (_enemys[i].pos.lin == _wall[p].lin && _enemys[i].pos.col == _wall[p].col) { _gameOver(); } } } } if (_wallDefenderGameStatus == WALL_GAME_ON) { _display->clear(); } for (int lin=0; lin<_display->rows(); lin++) { for (int col=0; col<_display->columns(); col++) { for (int p=0; p<_lengthWall; p++){ boolean val = _wall[p].col==col && _wall[p].lin==lin; if (val) { _display->write( lin, col, val ); break;} } for (int p=0; p<WALL_DEFENDER_MAX_ENEMY; p++) { if (_enemys[p].dir != DIR_STOP){ boolean val = _enemys[p].pos.col==col && _enemys[p].pos.lin==lin; if (val) { _display->write( lin, col, val ); break;} } } } } _display->write(_position.lin, _position.col, HIGH); if (_shootStatus != WALL_SHOOT_STOP) { _display->write(_shoot.lin, _shoot.col, HIGH); } } public: WallDefenderGame(BitArray2D * display){ _display = display; _ur = new UniqueRandom( _display->rows() * _display->columns() ); _lengthWall = 0; _lengthEnemy = 0; _start(); } void left() { _direction = DIR_LEFT; } void right() { _direction = DIR_RIGHT; } void top() { _direction = DIR_TOP; } void bottom() { _direction = DIR_BOTTOM; } int getScore(){ return _score; } Position getPositionPlayer() { return _position; } void shoot(){ if (_shootStatus == WALL_SHOOT_STOP){ _shoot.lin = _position.lin; _shoot.col = _position.col; _shootStatus = (_shoot.col <= _display->columns() / 2-1) ? WALL_SHOOT_LEFT : WALL_SHOOT_RIGHT; } } int update(){ int r = false; if (millis() - _last_millis > _time) { r = true; _last_millis = millis(); if (_wallDefenderGameStatus == WALL_GAME_ON) { _runEnemys(); } if (_wallDefenderGameStatus == WALL_GAME_OVER) { _runGameOver(); } } if (millis() - _last_millis_player > 50){ r = true; _last_millis_player = millis(); if (_wallDefenderGameStatus == WALL_GAME_ON) { _runPlayer(); } if (_wallDefenderGameStatus == WALL_GAME_OVER) { _runGameOver(); } } if (millis() - _last_millis_shoot > 50){ r = true; _last_millis_shoot = millis(); if (_wallDefenderGameStatus == WALL_GAME_ON) { _runShoot(); } if (_wallDefenderGameStatus == WALL_GAME_OVER) { _runGameOver(); } } if (r) { _updateDisplay(); } return r; //r-->indica se houve mudança no display } }; /************************************************************************************************************* *******************************FIM CLASSE WALL DEFENDER GAME************************************************** **************************************************************************************************************/ /************************************************************************************************************* *******************************DISPLAY************************************************************************ **************************************************************************************************************/ /* rotation indica qual parte do display estará para cima TOP L . . . . . . . . R E . . . . . . . . I F . . . . . . . . G T . . . . . . . . H . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . BOTTOM */ enum Rotation {TOP, LEFT, BOTTOM, RIGHT}; struct Display { int index; Position position; Rotation rotation; }; /************************************************************************************************************* *******************************FIM DISPLAY******************************************************************** **************************************************************************************************************/ /************************************************************************************************************* *******************************DECLARACAO DOS OBJETOS********************************************************* **************************************************************************************************************/ /* tamanho display real * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ const int LINHAS = 8; const int COLUNAS = 16; Display displays_8x8[] = { {0, {0,0}, LEFT}, {1, {0,8}, RIGHT} }; BitArray2D ba(LINHAS, COLUNAS); //8 linhas e 16 colunas, usada para armazenar o estado do display WallDefenderGame wall(&ba); RotaryEncoderLimits lim[] = { {-1000,1000} }; //limites máximos e mínimos que as variaveis podem atingir RotaryEncoder re(A0, A1, 4, 1, lim); //pino clk, pino dt, pino sw, qtd variaveis, limites LedControl lc=LedControl(10,12,11,2); //pin 10: DataIn ; pin 12: CLK ; pin 11: LOAD --- 2 display 8x8 /************************************************************************************************************* *******************************FIM DECLARACAO DOS OBJETOS***************************************************** **************************************************************************************************************/ /************************************************************************************************************* *******************************TRATAMENTO DAS INTERRUPÇÕES**************************************************** **************************************************************************************************************/ //interrupções dos pinos A0 e A1 via Pin Change Interrupt ISR(PCINT1_vect) { volatile static byte lastVal_a0 = LOW; volatile static byte lastVal_a1 = LOW; byte val_a0 = digitalRead(A0); byte val_a1 = digitalRead(A1); if (lastVal_a0 != val_a0){ re.update_a(); lastVal_a0 = val_a0; } if (lastVal_a1 != val_a1){ re.update_b(); lastVal_a1 = val_a1; } } void setup_interrupts(){ //-----PCI - Pin Change Interrupt ---- pinMode(A0,INPUT); // set Pin as Input (default) digitalWrite(A0,HIGH); // enable pullup resistor pinMode(A1,INPUT); // set Pin as Input (default) digitalWrite(A1,HIGH); // enable pullup resistor cli(); PCICR |= 0b00000010; // habilita a porta C - Pin Change Interrupts PCMSK1 |= 0b00000011; // habilita interrupção da porta c nos pinos: PCINT8 (A0) e PCINT9(A1) sei(); } /************************************************************************************************************* *******************************FIM TRATAMENTO DAS INTERRUPÇÕES**************************************************** **************************************************************************************************************/ void update_display() { lc.startWrite(); for (int lin=0; lin<ba.rows(); lin++) { for (int col=0; col<ba.columns(); col++) { for (int i=0; i<sizeof(displays_8x8)/sizeof(Display); i++) { int l = lin - displays_8x8[i].position.lin; int c = col - displays_8x8[i].position.col; if (l>=0 && l<=7 && c>=0 && c<=7) { if (displays_8x8[i].rotation == BOTTOM) { c=7-c; l=7-l; } if (displays_8x8[i].rotation == LEFT) { int aux=c; c=l; l=7-aux; } if (displays_8x8[i].rotation == RIGHT) { int aux=l; l=c; c=7-aux; } lc.setLed(displays_8x8[i].index, l, c, ba.read(lin, col) ); } } } } lc.send(); } void setup() { Serial.begin(9600); lc.shutdown(0,false); lc.setIntensity(0,1); lc.clearDisplay(0); lc.shutdown(1,false); lc.setIntensity(1,1); lc.clearDisplay(1); setup_interrupts(); randomSeed(analogRead(A2)); re.setValue(0, 0); //inicializa o rotary em 0 } void loop() { static int val_encoder = 0; static boolean change = false; //anti-horario if (re.getValue(0) < val_encoder && !change && wall.getPositionPlayer().lin > 0 && wall.getPositionPlayer().col == 9){ wall.top(); change = true; } if (re.getValue(0) < val_encoder && !change && wall.getPositionPlayer().lin == 0 && wall.getPositionPlayer().col >= 7){ wall.left(); change = true; } if (re.getValue(0) < val_encoder && !change && wall.getPositionPlayer().lin < 7 && wall.getPositionPlayer().col == 6){ wall.bottom(); change = true; } if (re.getValue(0) < val_encoder && !change && wall.getPositionPlayer().lin == 7 && wall.getPositionPlayer().col <= 9){ wall.right(); change = true; } //horario if (re.getValue(0) > val_encoder && !change && wall.getPositionPlayer().lin > 0 && wall.getPositionPlayer().col == 6){ wall.top(); change = true; } if (re.getValue(0) > val_encoder && !change && wall.getPositionPlayer().lin == 7 && wall.getPositionPlayer().col >= 7){ wall.left(); change = true; } if (re.getValue(0) > val_encoder && !change && wall.getPositionPlayer().lin < 7 && wall.getPositionPlayer().col == 9){ wall.bottom(); change = true; } if (re.getValue(0) > val_encoder && !change && wall.getPositionPlayer().lin == 0 && wall.getPositionPlayer().col <= 8){ wall.right(); change = true; } val_encoder = re.getValue(0); if ( wall.update() ) { change = false; update_display(); } //controla o click do botao do enconder static byte b = HIGH; //pra ler apenas uma vez o botao ao pressionar if( re.buttonRead() == LOW && b != re.buttonRead() ) { wall.shoot(); //dispara o tiro delay(50); //debounce meia boca } b = re.buttonRead(); }